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Note: This is a document that exists primarily for my own use, as a place to record and clarify my under-
standing of some foundational issues in quantum theory. I intend to refine and extend it over time. To that
end, I would be pleased if it is useful to anyone else, and even more pleased if anyone has any comments on
(or vehement disagreements with) anything I’ve written. Let me know!

1 Questions raised by quantum mechanics

Textbook quantum mechanics is based on the following postulates:

1. Each physical system S is associated to a separable complex Hilbert space HS .

2. If a system S is composed of two disjoint subsystems A and B, then HS = HA ⊗HB .

3. The state of an isolated system is given by a normalized vector ψ ∈ HS .

4. The state of an isolated system evolves unitarily in time.

5. An agent may choose to measure a system S. This action involves a choice of closed subspace V ⊆ HS ,
followed by either (a) the agent receiving the answer “yes” with probability p = 〈ψ,ΠV ψ〉 and the state
is projected onto V and renormalized, or (b) the agent receiving the answer “no” with probability 1−p
and the state is projected onto V ⊥ and renormalized.

This framework immediately invites several questions, including at least the following five:

Q1: Does this model actually capture all the phenomena we know of?

Certainly it is not manifestly relativistically covariant, as the processes of measurement and unitary evolu-
tion are described in a preferred reference frame. In addition, incorporating bosonic and fermionic statistics
would require some extra structure. Destructive measurements, such as photon polarization detection are
also not supported by the notion of a static set of systems.

Q2: Why should we assign a Hilbert space to each system and compute probabilities using the Born rule
and update the state with unitaries?

If we were to write down a classical theory modeled on this structure, we would assign a set to each
system, with the elements of the set nothing more than the possible states of that system. This seems like a
plausible thing to do from a purely a priori point of view: of course a physical theory should use in its math-
ematical expression the collection of all of the ways that things can be. What does the extra structure mean?

Q3: Are probabilistic outcomes fundamental, or can we convert obtain a deterministic theory somehow?

This is the problem of hidden variables. It would be nice if it turned out that a quantum state simply
corresponded to a probability distribution over a state space of the classical form discussed in the previous
question. It would then become interesting to ask why there seems always to be this particular kind of
restriction on what we can know about the state of a system, but our classical ontological intuition would
be rescued.

1



Q4: Are the system/agent and unitary/measurement dichotomies fundamental, or can we dispose of this
distinction?

This is the measurement problem. In principle there is no reason that these distinctions could not be
fundamental (the theory works, after all, and is mathematically consistent), but it would be very strange.
In classical mechanics, there is no obstruction to thinking about an agent as a physical system in its own
right, but examples such as the Wigner’s friend thought experiment demonstrate the difficulty in treating
agents as quantum systems.

Q5: Can the agents do anything interesting that they couldn’t if the systems were classical?

As a yes or no question, this one is easy: yes. Quantum cryptography, communication, and computa-
tion (at least with oracles) provide examples of protocols that are possible with quantum mechanics and not
classical, and there is presumably much more to discover. This sort of analysis, where the quantum nature
of the physical systems is treated as a resource for accomplishing informational tasks, might be useful for
thinking about the prior three questions.

2 Quantum Logic

The goal of this note is to discuss what quantum theory has to say about the structure of the set of
propositions about a physical system, a program initiated by Birkhoff and von Neumann in [2]. In order to
do so, we first need to be clear about what these propositions actually are. We will focus on the following
fragment of textbook quantum mechanics:

Quantum mechanics, for our purposes

Each isolated physical system is associated to a complex Hilbert space H, which we’ll take to be finite-
dimensional. The state of the system is a norm-1 vector ψ ∈ N , where N denotes the unit sphere of H.
Each two-outcome measurement is associated to a subspace V ⊆ H. If the system is in the state ψ, the
probability of receiving the answer yes upon performing the measurement associated to the subspace V is
given by the Born rule.

Propositions about a quantum system

We are now in a position to think about propositions that some user of quantum mechanics could consider.
There are multiple types of propositions about a physical system suggested by the formalism described in
the last paragraph:

(S) = “The state ψ of the system is in the subset S ⊆ N (H)”. (1)

[V ] = “The measurement corresponding to the subspace V ⊆ H would yield the answer yes.” (2)

[V ]
′

= “The measurement corresponding to the subspace V ⊆ H would yield the answer no.” (3)

Denote by P the set of all such propositions. For each proposition, a user of quantum mechanics may hold
one of (at least) three attitudes: belief, rejection, or uncertainty. For some proposition x ∈ P, we will denote
these attitudes by φ(x) = 1, 0, or −, respectively, so that φ : P → {1, 0,−} is an object that encodes the
user’s attitudes towards all propositions about the system. Quantum mechanics (along with set theory)
places restrictions of logical coherence on φ. For two propositions x, y ∈ P, we will say that x implies y,
denoted x → y, if these restrictions require that if φ(x) = 1 then φ(y) = 1, and if φ(y) = 0 then φ(x) = 0.
In particular, we see that the following hold for any subsets S, T ⊆ N and any subspace V ⊆ H:

(S)→ (T ) iff S ⊆ T (4)

(V ∩N )↔ [V ] (5)(
V ⊥ ∩N

)
↔ [V ]

′
, (6)
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where V ⊥ is the orthogonal complement of V .

Definition 1. A poset (P,→) is a set P together with a reflexive, transitive binary relation → such that
x→ y and y → x implies x = y (antisymmetry).

If we consider only the propositions of the form (S), equipped with the restriction of the relation →, we
obtain a poset we will call Pstate. This is nothing but the powerset of N , partially ordered by inclusion. If
we consider only propositions about measurement outcomes, i.e. propositions of the form [V ] or [V ]

′
, we can

identify the logically equivalent propositions [V ]
′

and
[
V ⊥
]

to obtain the poset

Pmeas = {[V ] : V ⊆ H a subspace} (7)

partially ordered by the subspace relation.
From classical physics we have the intuition that, given enough information, we can determine the state

of a system to arbitrary precision, and that a measurement is merely the revelation of a certain state-
dependent property of the system (presumably with some continuity conditions). Then an agent with
enough information should in principle be able to assign either 0 or 1 to all propositions of either the form
(S) or the form [V ]. This intuition fails in quantum mechanics. In principle, an agent can assign truth values
simultaneously to all of the propositions (S), but because of the existence of non-commuting projectors on
H, no agent can do this for the propositions [V ].

Lattices of propositions

Definition 2. A lattice (L,→) is a poset (L,→) such that for any two elements x, y ∈ L there exist both
(1) a least upper bound or join x ∨ y ∈ L such that for any z ∈ L if x → z and y → z then x ∨ y → z and
(2) a greatest lower bound or meet x ∧ y ∈ L such that if z → x and z → y then z → x ∧ y.

In fact, both of the posets defined above are lattices, with meets and joins given by

(S) ∧ (T ) = (S ∩ T ) (8)

(S) ∨ (T ) = (S ∪ T ) (9)

[V ] ∧ [W ] = [V ∩W ] (10)

[V ] ∨ [W ] = [V ⊕W ] (11)

where V ⊕W denotes the linear span of the subspaces V and W , i.e. the smallest subspace containing both.
Note that these equalities are not definitions, but rather may be derived from the definitions of the partial
orders on Pstate and Pmeas. The following definitions of lattice-theoretic terms are taken from [4].

Definition 3. A zero or minimum of a lattice is an element 0 such that 0 < x for all x. A unit or maximum
is an element 1 such that x < 1 for all x. A lattice with both 0 and 1 is said to be bounded.

Definition 4. In a bounded lattice, an element y is said to be a complement of the element x if x ∨ y = 1
and x∧ y = 0. A bounded lattice is said to be complemented if each element has a complement in the lattice.

Definition 5. An orthocomplementation on a complemented lattice is a map ′ that assigns to each element
x an element x′ such that x′ is a complement of x, (x′)′ = x, and if x < y then y′ < x′. A bounded lattice
equipped with an orthocomplementation is called an orthocomplemented lattice or an ortholattice.

Definition 6. An ortholattice is said to be orthomodular if x < z implies x ∨ (x⊥ ∧ z) = z.

Definition 7. A lattice is complete if any subset of the lattice has a meet and a join.

Definition 8. An element a is said to cover an element b, denoted a � b, if a 6= b, b → a, and for any x
such that b→ x and x→ a, x = a or x = b.

Definition 9. A nonzero element a of a lattice with 0 is called an atom if a � 0. A lattice is atomistic if
every element x is the join of the set of atoms a such that a→ x.
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Definition 10. A lattice with 0 is said to satisfy the covering law if for any x and any atom a, a ∧ x = 0
implies (a ∨ x) � x.

Definition 11. A propositional system is a complete, atomistic, orthomodular lattice satisfying the covering
law, i.e. for any x ∈ L and any atom a ∈ L, a ∧ x = 0 implies that a ∨ x covers x [5].

Definition 12. A lattice is said to be distributive if for all x, y, z we have x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) or,
equivalently, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 13. A Boolean lattice is a distributive complemented lattice.

Both Pstate and Pmeas are propositional systems, and Pstate is Boolean. In Pstate, we have

0 = (∅) 1 = (H) (S)
′

= (Sc) (12)

and in Pmeas, we have

0 = [0] 1 = [H] [V ]
′

=
[
V ⊥
]
. (13)

Quantum AND, OR, NOT?

A question that suggests itself: To what extent may we interpret the operations ∧, ∨, and ′ in the lattice
Pmeas of “quantum propositions” as the AND, OR, and NOT of classical Boolean logic?

The classical Boolean logical operations AND, OR, and NOT should not be thought of as acting on propo-
sitions of the form [V ] ∈ Pmeas. Rather, they may be used to generate propositions from the elementary
set

A(V, φ) = “The agent has attitude φ about the proposition [V ]”. (14)

A given belief descriptor φ then determines a truth value, true or false, for all of these propositions by
assigning true to a basic proposition if φ = φ([V ]) and false otherwise, and using the standard truth tables
to assign values to compound propositions. AND and the meet operation may be thought of synonymously:

A([V ] , 1) AND A([W ] , 1) = A([V ] ∧ [W ] , 1). (15)

However, OR does not line up neatly with the join operation. Suppose that V and W are orthogonal subspaces
and the agents beliefs are determined by a state ψ which lies in neither V nor W , but does lie in their span.
Then A([V ] , 1) and A([W ] , 1) are assigned false while A([V ] ∨ [W ] , 1) = A([V ⊕W ] , 1) is assigned true

so that

A([V ] , 1) OR A([W ] , 1) 6= A([V ] ∨ [W ] , 1). (16)

Therefore, it should not come as too great a surprise that Pmeas fails to be distributive, and more importantly
this failure is in no way a failure of the distributivity of AND and OR. Moreover, we have

NOT A([V ] , 1) = A([V ] , 0) OR A([V ] ,−) 6= A([V ] , 0) = A([V ]
′
, 1). (17)

Note that neither of these non-equalities is in any way paradoxical. Indeed, the NOT non-equality would
also appear if we repeated this analysis with the (essentially classical) propositions Pstate. Any apparent
paradox comes from conflating propositions about a system with propositions about an agents beliefs about
propositions of a system. The only difference is that in the case of Pmeas we cannot even in principle restrict
to belief descriptors assigning every proposition 1 or 0, which would allow us to collapse the two levels of
propositions.
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Reconstruction of quantum theory

Another question: How much of the structure of quantum mechanics is captured by the lattice Pmeas?

Classical physics assigns to each system a set Ω, the state space, and represents the state of the system
by an element ω ∈ Ω. Each two-outcome measurement is associated to a subset S ⊆ Ω. If the system is in
the state ω, the measurement associated to the subset S will yield the answer yes if ω ∈ S, and the answer
no if ω /∈ S. We can in principle define the propositions (S), [V ], and [V ]

′
as in the quantum case, but for

most purposes this would be needlessly pedantic - the structure of Pstate is exactly that of Pmeas.
Entertaining for a moment the distinction between Pstate and Pmeas, we may imagine that we would like

to reconstruct the framework of classical physics from the lattice Pmeas, which is Boolean. In fact we can do
so, thanks to Stone’s theorem:

Theorem 1. A lattice is Boolean iff it is isomorphic to a field of sets.

See e.g. Corollary 21 of Chapter 7 in [4]. Note that a field of sets is a subset F ⊆ 2Ω of the powerset of some
set Ω such that F is closed under finite intersections and unions as well as set complement.

This is a nice result (and mathematically apparently quite powerful) but from the point of view of clas-
sical physics not terribly useful. After all, it is very natural to start from a set Ω of “ways the world can be”
and to assume that measurements reveal values of physical quantities, which are simply functions Ω → R.
The situation is very different in quantum mechanics. It does not seem at all natural to posit that the state
space of a physical system should be a complex Hilbert space. There is thus a motivation for looking for
an analogue to Stone’s theorem. Ideally, we would like to be able to justify in some satisfactory way that
Pmeas should have some structure as an abstract lattice and then apply the “quantum Stone’s theorem” to
conclude that Pmeas must be isomorphic to the lattice of subspaces of some complex Hilbert space. Taking
Pmeas to be some propositional system, we can’t quite get there: Piron’s theorem (informally) allows us to
conclude that Pmeas is isomorphic to the lattice of subspaces of some generalized Hilbert space (see [5, 6]
for far more detail). Importantly, Piron’s theorem does not allow us to conclude that the set of propositions
about measurement outcomes of a quantum system should be isomorphic to the lattice of subspaces of a
complex Hilbert space.

Soler’s theorem

3 Hidden variables, non-locality, and contextuality

Consider a system described by a finite-dimensional Hilbert space H. The set of {0, 1}-valued questions we
can ask about the system is exactly the set of subspaces V ⊆ H. Suppose that the system is isolated, and
does not undergo any dynamics other than those resulting from measurement. If an agent makes a sequence
of measurements V = V1, V2, . . . , VN , we would like to be able to assign probabilities PV(s) to each of the
possible sequences s = s1, s2, . . . , sN of outcomes. There are various ways to do so:

The orthodox way to define these probability distributions is to specify a unit vector ψ ∈ H and define
the probabilities

PV(s) =
∥∥∥ΠsN

VN
(1−ΠVN

)
1−sN · · ·Πs1

V1
(1−ΠV1

)
1−s1 ψ

∥∥∥2

. (18)

The data associated to this probabilistic model is the pair (H, ψ).

Another way we might define the probabilities is to assume that there is some state space Ω associated
with the system, with the state determining uniquely the outcome to any question that might be asked. The
system may be prepared randomly according to some initial probability distribution µ on Ω. In order to
compute the probabilities of outcome sequences for a given sequence of measurements, we need to specify the
way in which the states determine outcomes and the way that measurements affect the states. We therefore
introduce the following objects:
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IZ ZI ZZ

XI IX XX

−XZ −ZX Y Y

Table 1: Mermin-Peres magic square.

1. F is a map from subspaces V ⊆ H to functions FV : Ω → {0, 1}. The interpretation of this map is
that if V is measured and the system is in the state ω, the answer FV (ω) will be obtained.

2. R is a map from subspaces V ⊆ H to functions RV : Ω→ Ω. The interpretation of this map is that if
V is measured and the system is in the state ω, the state is updated according to ω 7→ RV (ω).

Then we have the probabilities

PV(s) = µ
{(
F−1

V1
(s1)

)
∩
(
R−1

V1
◦ F−1

V2
(s2)

)
∩ · · · ∩

(
R−1

V1
◦ R−1

V2
◦ · · · ◦ R−1

VN−1
◦ F−1

VN
(sN )

)}
. (19)

The data associated to this probabilistic model is the quintuple (H,Ω, µ,F ,R).

If V and W are subspaces whose projectors commute, the corresponding measurements are compatible:
if V is measured and an outcome sV obtained, then W is measured, then V measured again, the outcome
will again be sV . In other words, as long as we are content to measure only compatible subspaces, we may
think of the outcomes as revealing pre-existing properties of the system. A way that this could be imple-
mented at the level of the hidden variable is to demand that FW ◦RV = FW whenever [ΠV ,ΠW ] = 0. Then
for any compatible subspaces V1, . . . , VN , we have

FV1
◦ RV2

◦ · · · ◦ RVN
= FV1

. (20)

so that the probabilities for sequences of outcomes simplify as

PV(s) = µ
{
F−1

V1
(s1) ∩ F−1

V2
(s2) ∩ · · · ∩ F−1

VN
(sN )

}
. (21)

Call this requirement non-contextuality.

Theorem 2. Given a Hilbert space H of dimension at least four, any quantum probabilistic model (H, ψ)
produces probabilities that are not reproduced by any hidden variable model (H,Ω, µ,F ,R).

Proof. This construction is known as the Mermin-Peres magic square [3].

Take a four-dimensional subspace of H that contains ψ, and consider the Table 1 of operators on this
subspace, with the commutation relations of the two-qubit Pauli operators. Consider sequences of measure-
ments defined by choosing a row or a column of the table and measuring in some order the +1-eigenspaces
of the three operators. Because each row and each column defines a set of commuting operators, these
measurements are compatible. Moreover, the product of the operators in a row is the identity, while the
product of the operators in a column is minus the identity. Therefore, the quantum model (H, ψ) predicts
that with probability one a measurement sequence corresponding to a row (column) will yield an odd (even)
number of “yes” responses.

Suppose that (H,Ω, µ,F ,R) is a non-contextual hidden-variable model that also makes these predictions.
Then (21) implies that, except possibly on a subset of Ω of µ-measure zero, we must have FV (ω) = 1 for an
odd (even) number of the subspaces determined by the operators in the rows (columns) of the table. But it
is impossible to fill in a 3× 3 table with ones and zeros in this way.

Note that another way to get around this problem is to suppose that the evaluation maps FV depend
on the set of compatible measurements (the context) that an agent plans to measure. In other words, the
outcome of a measurement of V depends on which other measurements might be made. Such a model would
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be a contextual hidden variable model.

Another feature we would like to retain from our classical intuition is the independence of separate sub-
systems. Suppose that a system S is composed of two subsystems A and B, so that HS = HA⊗HB . Denote
by VA the subspace V ⊗1 and by WB the subspace 1⊗W . A reasonable requirement on the hidden variable
theory is that making a measurement of A shouldn’t affect the outcome of a measurement on B. In other
words, we can consider requiring that FWB

◦ RVA
= FWB

. Then if we imagine an experiment in which a
measurement on system A is followed by a measurement on system B, the probabilities simplify:

PVA,WB
(sA, sB) = µ

{
F−1

VA
(sA) ∩ F−1

WB
(sB)

}
. (22)

Call this requirement locality.

Theorem 3. If H = HA ⊗ HB is a Hilbert space associated to a bipartite system with HA, HB both at
least two-dimensional, there is a quantum probabilistic model (H, ψ) that generates a set of probabilities not
reproduced by any local hidden variable model (H,Ω, µ,F ,R).

Proof. This is Bell’s theorem [1].

Take |0A〉 , |1A〉 ∈ HA orthogonal unit vectors in HA, and similarly for HB . Define the state

ψ =
1√
2

(|0A〉 |1B〉 − |1A〉 |0B〉) . (23)

Take V to be a one-dimensional subspace of the abstract two-dimensional space C2 spanned by |0〉 and |1〉.
Let VA be the image of V under the map |0〉 7→ |0A〉 ⊗ 1B , |1〉 7→ |1A〉 ⊗ 1B , and similarly for VB . If a
measurement of VA, yielding outcome sA, is followed by a measurement of WB , yielding sB , the quantum
model (H, ψ) predicts that the two outcomes differ with probability one.

Let (H,Ω, µ,F ,R) be a local hidden-variable model. Define

fV (ω) = (−1)FV (ω). (24)

From (22) we see that in order for the probabilities to agree with those defined by (H, ψ), we must have
fVA
≡ −fVB

except possibly on a set of µ-measure zero. Then for arbitrary V and W , we have

〈fVA
fWB
〉 =

∫
fVA

(ω)fWB
(ω) dµ(ω) = −

∫
fVA

(ω)fWA
(ω) dµ(ω) (25)

so that for any V , W , Z we find

〈fVA
fWB
〉 − 〈fVA

fZB
〉 =

∫
fVA

(ω)fWB
(ω) dµ(ω) =

∫ (
fVA

(ω)fZA
(ω)− fVA

(ω)fWA
(ω)

)
dµ(ω) (26)

=

∫
fVA

(ω)fZA
(ω)

(
1− fWA

(ω)fZA
(ω)

)
dµ(ω). (27)

Taking the absolute value of both sides, we find

|〈fVA
fWB
〉 − 〈fVA

fZB
〉| ≤

∫
|fVA

(ω)fZA
(ω)| × |1− fWA

(ω)fZA
(ω)| dµ(ω) (28)

=

∫ (
1− fWA

(ω)fZA
(ω)
)
dµ(ω) = 1 + 〈fWA

fZB
〉 . (29)

If we define p(V,W ) to be the probability that a measurement of V on system A followed by a measurement
of W on system B yield the same answer, we have

〈fVA
fVB
〉 = 2p(V,W )− 1 (30)
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so that the inequality may be rewritten

|p(V,W )− p(V,Z)| ≤ p(W,Z). (31)

Define V (θ) to be the subspace spanned by the vector

|θ〉 = cos θ |0〉+ sin θ |1〉 . (32)

The quantum model (H, ψ) assigns to these probabilities the values

p(V (θ), V (φ)) =
1

2
− cos(2(θ − φ))

2
(33)

Taking θ = 0, φ = π/8, and χ = π/4, we have

p(V (θ), V (φ)) =
2−
√

2

4
(34)

p(V (θ), V (χ)) =
1

2
(35)

p(V (φ), V (χ)) =
2−
√

2

4
(36)

These do not satisfy the inequality 31. Therefore we have established that any hidden variable model that
satisfies the anti-correlation property of (H, ψ) must satisfy a constraint (31) that is violated by (H, ψ).
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